Application of Biomass-Based Triboelectrification for Particulate Matter Removal
Electrostatic fields are crucial for achieving the highly efficient filtration of airborne pollutants. However, the dissipation of static charges over time, especially under humid conditions, limits their practical application. In this study, we present a self-charging air filter (SAF) powered by a triboelectric nanogenerator (TENG). This SAF is integrated into a commercial mask, termed SAFM, which can effectively capture and degrade airborne pollutants without requiring an external power source. By leveraging the triboelectric effect during breathing, the TENG within the SAFM continuously replenishes static charges, maintaining the triboelectric field. The system employs a cellulose aerogel/Ti3C2Tx composite as the electron donor and an esterified cellulose-based electrospun nanofiber as the electron acceptor. Remarkably, the triboelectric field significantly enhances filtration performance, with the SAF achieving up to 95.7% filtration efficiency for particulate matter as small as 0.3 μm. This work underscores the potential of TENG-powered triboelectric fields in the development of multifunctional, human-machine interactive facemasks.