Evaluating the Effectiveness of Cellulose-Based Surfactants in Expandable Graphite Wood Coatings
This study deals with the design of modern environmentally friendly and non-toxic flame retardants based on expandable graphite 25 K + 180 (EG) modified by cellulose ethers (Lovose TS 20, Tylose MH 300, Klucel H) and nanocellulose (CNC) that are biocompatible with wood and, therefore, are a prerequisite for an effective surfactant for connecting EG to wood. The effectiveness of the formulations and surfactants was verified using a radiant heat source test. The cohesion of the coating to the wood surface and the cohesion of the expanded graphite layer were also assessed. The fire efficiency of the surfactants varied greatly. Still, in combination with EG, they were all able to provide sufficient protection—the total relative mass loss was, in all cases, in the range of 7.38–7.83% (for untreated wood it was 88.67 ± 1.33%), and the maximum relative burning rate decreased tenfold compared to untreated wood, i.e., to 0.04–0.05%·s−1. Good results were achieved using Klucel H + EG and CNC + EG formulations. Compared to Klucel H, CNC provides significantly better cohesion of the expanded layer, but its high price increases the cost of the fireproof coating.