Modeling and Experimental Validation of Cell Morphology in Microcellular-Foamed Polycaprolactone
This study investigates the modeling and experimental validation of cell morphology in microcellular-foamed polycaprolactone (PCL) using supercritical carbon dioxide (scCO2) as the blowing agent. The microcellular foaming process (MCP) was conducted using a solid-state batch foaming process, where PCL was saturated with scCO2 at 6 to 9 MPa and 313 K, followed by depressurization at a rate of −0.3 and −1 MPa/s. This study utilized the Sanchez–Lacombe equation of state and the Peng–Robinson–Stryjek–Vera equation of state to model the solubility and density of the PCL-CO2 mixture. Classical nucleation theory was modified and combined with numerical analysis to predict cell density, incorporating factors such as gas absorption kinetics, the role of scCO2 in promoting nucleation, and the impact of depressurization rate and saturation pressure on cell growth. The validity of the model was confirmed by comparing the theoretical predictions with experimental and reference data, with the cell density determined through field-emission scanning electron microscopy analysis of foamed PCL samples. This study proposes a method for predicting cell density that can be applied to various polymers, with the potential for wide-ranging applications in biomaterials and industrial settings. This research also introduces a Python-based numerical analysis tool that allows for easy calculation of solubility and cell density based on the material properties of polymers and penetrant gases, offering a practical solution for optimizing MCP conditions in different contexts.