Diazinon removal from aqueous solution via grape branch-derived cellulose nanocrystals/polyethersulfone nanocomposite membrane: performance, characterization, and modeling
In this study, amino functionalized cellulose nanocrystals–polyethersulfone nanocomposite membrane (A-CNC/PES) based on agricultural waste was used for the removal of diazinon (DZ) from aqueous solution. The fabricated membrane has been characterized via attenuated total reflectance-Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD), thermal gravimetric analysis (TGA), water contact angel (WCA), porosity, and mean pore radius. The effect of variables, such as initial DZ concentration, pH, and A-CNC content, on the membrane performance was optimized using response surface methodology (RSM) through central composite design (CCD). The results indicated that the additive had the most significant effect on the hydrophilicity improvement, reducing surface roughness, and reducing fouling. The highest removal efficiency of A-CNC/PES membrane for DZ was about 99.3% (at A-CNC: 0.2 wt%), and more than three-fold water flux improvement (27.3 versus 8.3 kg/m2.h for unmodified membrane) was attained. The results of antifouling test confirmed that the A-CNC/PES membranes had a high-flux recovery (FRR: 90.05%). This study may provide promising insights for the development of next generation of agricultural waste-based nanocomposite membrane in the water and wastewater treatment.
Graphical abstract Highly efficient removal of diazinon pesticide from aqueous solutions by using grape branch-derived CNCs-PES nanocomposite membrane.