Features of Polymer Modification in a Supercritical Carbon Dioxide Environment
Abstract Processes of polymer modification in a supercritical carbon dioxide environment leading to the production of new materials intended primarily for medicine, pharmacology, and conducting polymer systems are analyzed. The processes of polymer impregnation in a supercritical carbon dioxide environment with carbon nanotubes to produce heat- and electrically conductive polymer materials and the processes of polymer micronization used in the development of polymer–polymer composite materials are considered. The processes of obtaining aerogel materials based on polysaccharides (sodium alginate) for use as matrices for biocompatible heterogeneous catalytic systems, the processes of impregnation of thermoplastics with photochromic and luminescent compounds leading to the corresponding photoactive polymer materials, and the processes of immobilization in natural polysaccharide matrices of biologically active compounds allowing the production of prolonged medicinal products are described. Particular attention is paid to the features of graft copolymerization, which allows obtaining biocompatible products for additive technologies and completely nontoxic materials with high adhesion to cells.
Fecha publicación: 2024/09/29
Autor: Solovieva, A.B., Timashev, P.S. Features of Polymer Modification in a Supercritical Carbon Dioxide Environment.