Lignin Nanoparticles Produced from Wheat Straw Black Liquor Using γ-Valerolactone
The valorization of the black liquor produced during the chemical pulping of wheat straw is the key to the sustainable use of this abundant agricultural waste. However, the silica problem has hampered the recovery process. Herein, nanoprecipitation technology was used to produce lignin nanoparticles (LNPs) from wheat straw black liquor using γ-valerolactone (GVL) as a solvent and water as an anti-solvent. The results showed that a uniform, well-dispersed, and stable LNP was produced. The particle size and Zeta potential of 161 nm and −24 mV of the LNP suspension were obtained at a GVL concentration of 87%. The chemical structure and bonding of the lignin were adequately preserved after nanoprecipitation based on two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) spectroscopy, Fourier transform infrared (FTIR) analysis, and thermal stability was improved based on thermogravimetric analysis. In addition, the abundant phenolic hydroxyl groups of LNP quantified by 31P-NMR analysis are beneficial for chemical cross-linking and modification. This work not only achieved the valorization of wheat straw black liquor but also opened up a new avenue for advanced nanomaterials.