Vigilancia Tecnológica

Información de la temática del proyecto

An integrated approach for plastic polymer degradation by the gut bacterial resident of superworm, Zophobas morio (Coleoptera:Tenebrionidae)

The potential of superworm to remove certain plastic polymers has recently been noted. In this study, aerobic bacterial strains were isolated from the gut of Zophobas morio larvae which were fed with polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS) polymers. Strains P2 (Leminorella), P6 (Bacillus), P9 (Bacillus), and P5 (Citrobacter) were associated with the highest PS (2.7%), PP (1.3%), PET (1.1%), and PE (0.42%) weight loss after 28 days, respectively. Pretreatments including thermal treatment (80 °C for 10 days), weathering (4 months in the free environment), and nitric and sulfuric acids (1 N, 10 days) improved the degradation of PE (1.3%), PET (1.9%), PP (5.2%), and PS (8.3%) by the same strains, respectively. Further analyses on the PS degradation by Leminorella sp. P2 revealed acid pretreatment promoted the formation of the C?=?C, C?=?O, and O?H functional groups. Surface irregularities, as well as a 3.6-fold increase in surface roughness, were observed in the PS film subjected to biodegradation. The contact angle dropped from 98.4° to 42.2° following the biodegradation. Bacterial depolymerization was confirmed by the 8.7% and 3.4% reduction of Mn and Mw and the change in polydispersity from 1.65 to 1.75. The results suggest that Zophobas morio microbiota in combination with abiotic pretreatment can be considered for plastic waste management.